Recombinant production of human interleukin 6 in Escherichia coli
Autor: Nausch, H., Huckauf, J., Koslowski, R.; Meyer, U.; Broer, I.; Mikschofsky, H.
In:
PLoS ONE
Bandangabe: 8 Auflage: 1 Jahr: 2013
Einordung:
Institut: Professur Agrobiotechnologie
Abstract: In this study, we compared basic expression approaches for the efficient expression of bioactive recombinant human interleukin-6 (IL6), as an example for a difficult-to-express protein. We tested these approaches in a laboratory scale in order to pioneer the commercial production of this protein in Escherichia coli (E. coli). Among the various strategies, which were tested under Research and Development (R&D) conditions, aggregation-prone IL6 was solubilized most effectively by co-expressing cytoplasmic chaperones. Expression of a Glutathion-S-Transferase (GST) fusion protein was not efficient to increase IL6 solubility. Alteration of the cultivation temperature significantly increased the solubility in both cases, whereas reduced concentrations of IPTG to induce expression of the T7lac-promotor only had a positive effect on chaperone-assisted expression. The biological activity was comparable to that of commercial IL6. Targeting the expressed protein to an oxidizing environment was not effective in the generation of soluble IL6. Taken together, the presence of chaperones and a lowered cultivation temperature seem effective to isolate large quantities of soluble IL6. This approach led to in vivo soluble, functional protein fractions and reduces purification and refolding requirements caused by downstream purification procedures. The final yield of soluble recombinant protein averaged approximately 2.6 mg IL6/liter of cell culture. These findings might be beneficial for the development of the large-scale production of IL6 under the conditions of current good manufacturing practice (cGMP). Ansprechpartner Weitere Information im WWW
Zur Publikation: Mitarbeiter,
Projekte
Weitere Publikationen im Forschungsteilschwerpunkt
Letzte Änderung des Eintrages:
15.07.2013
|