Phosphorus losses from an artificially drained rural lowland catchment in North-Eastern Germany

Autor:
Tiemeyer, B., Kahle, P., Lennartz, B.
In:

Agricultural Water Management

Auflage: 96 (4)
ISBN: 0378-3774
Seite: 677 - 690
Jahr: 2009

Einordung:
Institut: Professur Bodenphysik
Teilschwerpunkt: Umweltgerechter Stoffhaushalt

Abstract:
In a small, extensively artificially drained lowland catchment (15.5 km2) in Mecklenburg-Vorpommern (North-Eastern Germany), the dynamics and the extent of total phosphorus (TP) and total reactive phosphorus (TRP) losses as well as the discharge were monitored at different scales for three winter seasons of 6 months each. Ranging from 0.036 to 0.044 mg TP l-1 and from 0.030 to 0.037 mg TRP l-1, average phosphorus concentrations in the discharge of a collector drain, a ditch draining arable land and a small brook were low. Elevated concentrations occurred during intensive snowmelt events. Probably due to the re-mobilisation of phosphorus under anaerobic conditions, concentrations (0.137 mg TP l-1 and 0.076 mg TRP l-1) in a ditch draining grassland on degraded peat were significantly higher than at the other sites characterised by mineral soils. Generally, phosphorus concentrations increased with discharge at all sites except for the grassland, although not during each single discharge event. Surprisingly, a dependency on the fertilisation practices could not be found. The phosphorus losses per winter season were low, with a maximum of 270 g TP ha-1 and 211 g TRP ha-1. Using a two-component mixing model based on baseflow separation and parameter optimisation, it was estimated that around 53, 60 and 56% of the TP losses from the collector drain, from the ditch and from the brook as well as 53, 68 and 45% of the TRP loads were exported via a fast flow component. This component accounted for 18-23% of the total discharge. At all measurement stations, there were large differences between the partitioning patterns of the single discharge events. Our study has not only shown the event-based behaviour of the P losses and the possible occurrence of high P concentrations due to preferential flow, but also that the highest potential of eutrophication in this lowland landscape originates from drained, degraded, and intensively used peatlands.

Ansprechpartner

 

 

Zur Publikation: Mitarbeiter, Projekte
Weitere Publikationen im Forschungsteilschwerpunkt

 

 

 

 

Letzte Änderung des Eintrages: 05.01.2011

Suche :
Datenbanksuche Publikation (in Titel, Autor, Beschreibung)