Crop Yield Mapping with ARC using only Optical Remote Sensing

Autor:
Lewis, Philips; Yin, Feng; Gomez-Dans, Jose; Weiß, Thomas; Adam Elhadi
In:

Volume X-3-2024, 2024 | ISPRS TC III Mid-term Symposium “Beyond the canopy: technologies and applications of remote sensing”

DOI: https://doi.org/10.5194/isprs-annals-X-3-2024-199-2024
Seite: 199 - 206
Jahr: 2024

Einordung:
Institut: Professur Geodäsie und Geoinformatik

Abstract:
ARC is a new method to generates time series of a full set of biophysical parameters derived from optical EO. Here, we examine relationships between this ‘full’ set and maize yield. 15 Parameters per pixel are estimated over the US corn belt using ARC, to fully describe the phenology, soil, and crop status over time for typical behaviour. ARC is tested for a new model over an area of irrigated and rain-fed winter crop in South Africa. We find that care must be taken for episodic events, and robust filtering methods should be developed for ARC, but average magnitude and timing is well-expressed. We find that a robust yield model (over time and space) can be created at the county-level for maize using only EO parameters with RMSE of 704-938 kg/ha using a non-linear model, but the results are only slightly poorer if a linear model is used. It compares well to a model that also includes weather data, showing that a model can be driven by optical EO data alone.

Ansprechpartner

 

 

Zur Publikation: Mitarbeiter, Projekte
Weitere Publikationen im Forschungsteilschwerpunkt

 

 

 

 

Letzte Änderung des Eintrages: 05.12.2024

Suche :
Datenbanksuche Publikation (in Titel, Autor, Beschreibung)